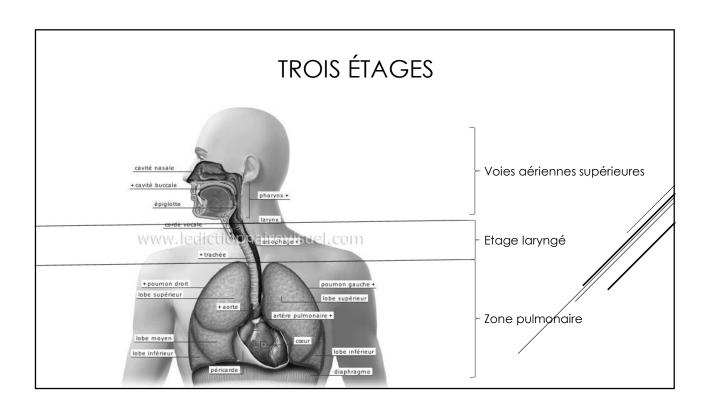
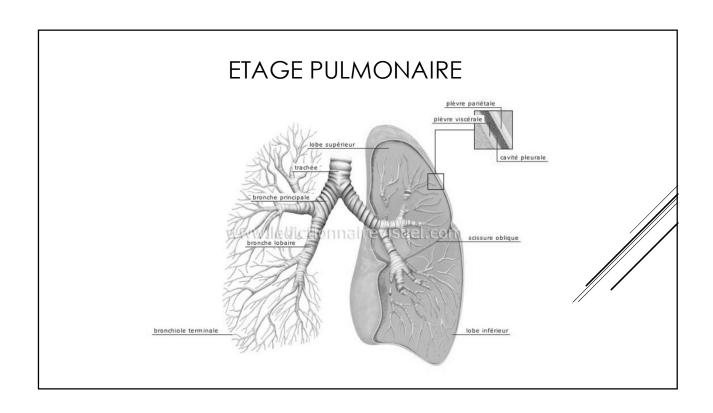
FONCTION RESPIRATORE

FAE AMBULANCIERS SMUR 2023

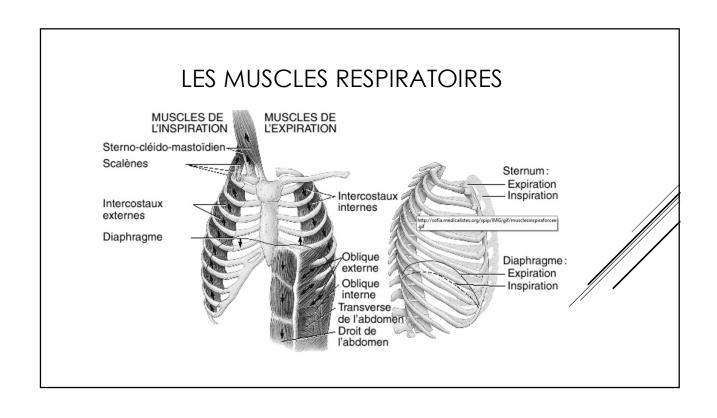

CESU 21 - SAMU 21

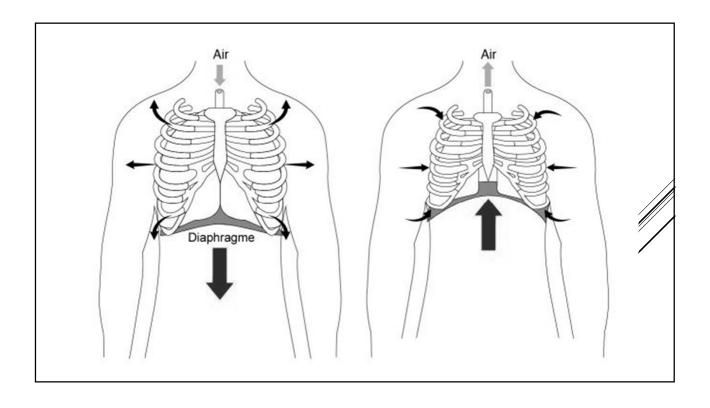


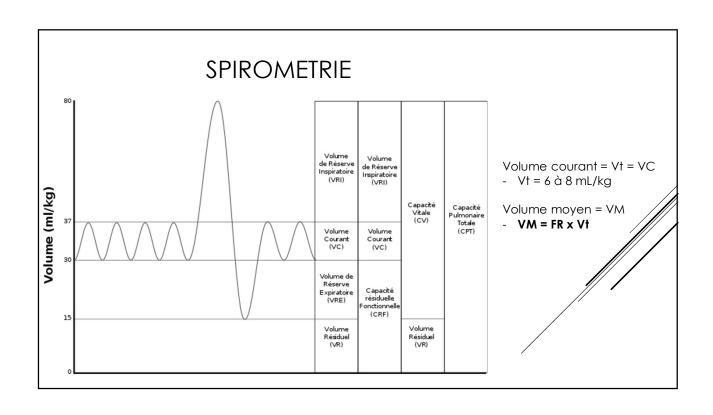
Quelles est la composition du système respiratoire?

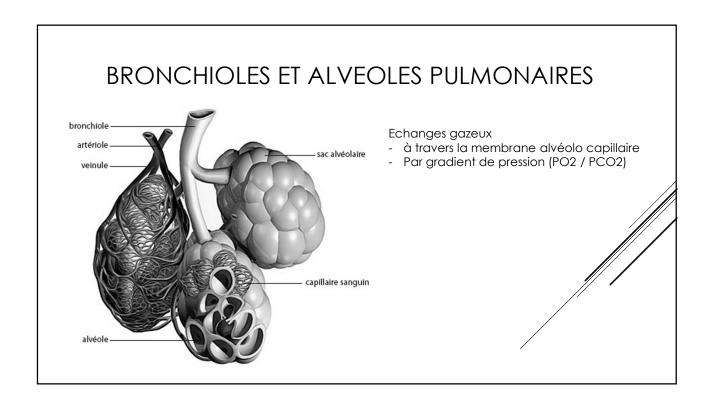
Comment fonctionne t-il?

Comment se déroulent les échanges gazeux ?

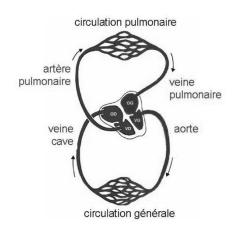



LA PHASE INSPIRATOIRE = **ACTIVE**


- ▶ Spontanée ou volontaire
- ▶ Normale ou forcée
- ▶ Mise en œuvre des muscles du cou, du diaphragme et des intercostaux
 - ▶ Soulèvement et élargissement de la cage thoracique = augmentation du volume
 - ► Création d'une dépression (Pression intra pulmonaire négative)
 - ► Pression intrapulm < pression atmosphérique = Entrée d'air dans les poumons


LA PHASE EXPIRATOIRE = PASSIVE

- ▶ Spontanée ou volontaire
- ▶ Normale: phénomène passif par relâchement des muscles inspirateurs
 - ▶ Relâchement = retour au volume
 - ▶ Retour à une pression neutre = sortie d'air des poumons
- ▶ ou forcée: relâchement + part active
 - ▶ Mise en œuvre des abdominaux et des intercostaux
 - ▶ Rétrécissent de la cage thoracique = diminution du volume
 - ▶ Création d'une pression positive
 - ▶ Pression intrapulm > pression atmosphérique = Sortie d'air dans les poumops



CIRCULATION PULMONAIRE (BASSE PRESSION)

Artère Pulmonaire

- Sort du VD
- Sang pauvre en O2
- Riche en CO2

Veines pulmonaires

- Vontàl'OG
- Sang riche en O2
- Pauvre en CO2

CIRCULATION BRONCHIQUE (HAUTE PRESSION)

- ► Artères bronchiques
 - ▶ Issues de l'Aorte = riches en O2
 - ▶ Nourrissent les bronches (muscles lisses bronchiques)
- ► Veines bronchiques
 - ▶ Se jettent dans le Veine Cave sup
 - ▶ Pauvres en O2

CONTRÔLE DE LA RESPIRATION

- ▶ Centres de commande: dans le **tronc cérébral** (bulbe rachidien)
 - ► Automatisme: FR
 - ▶ Volontaire
- ▶ Stimulus chimique (chémorécepteurs)
 - ► Intravasculaire (crosse Ao ++)
 - ► Concentration du sang en O2, CO2, pH
 - ▶ Stimulus principal = hypercapnie
 - ► Stimulus secondaire = hypoxie
 - ► Cas particulier de l'insuffisant respiratoire

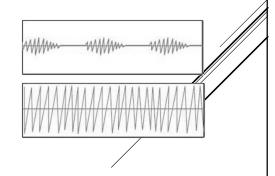
ABSENCE DE RESPIRATION

Après LVAS < 2 mvt thoracique et/ou abdominal / 10 sec ⇒ ACR = RCP, DAE

EXAMEN DE LA RESPIRATION ÉVALUATION DE LA DYSPNÉE

QUALITÉ DE LA RESPIRATION ?

FRÉQUENCE RESPIRATOIRE


- Adulte 12 20 cycles/min
- Enfant 30 cycles/min
- NN 40 cycles/min
- ▶ Bradypnée, tachypnée
- ▶ Phénomènes de compensation
- Mesure par électrodes thoraciques = assez peu fiable !!!

AMPLITUDE

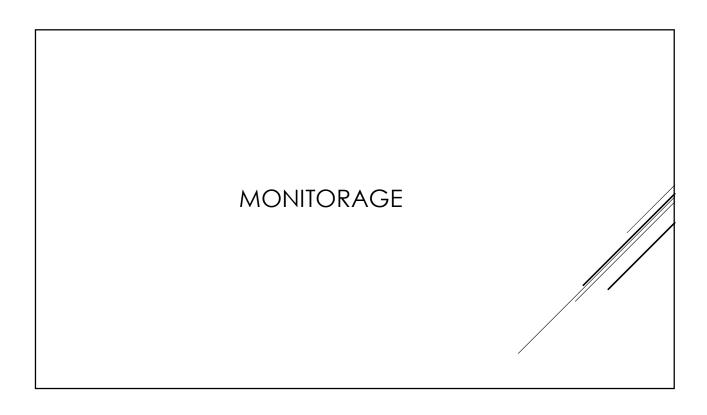
► Polypnée, hypopnée

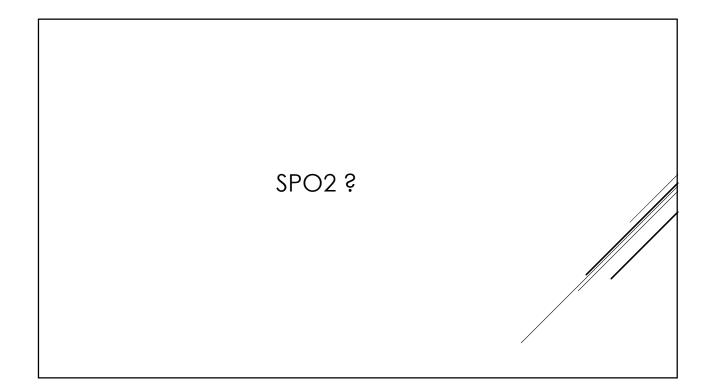
RÉGULARITÉ

- ► Cheyne Stokes (Insuffisance cardiaque, AVC...)
- ► Küsmaul (acidocétose diabétique...)

BRUITS

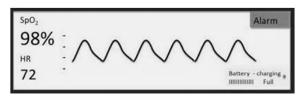
- ► Sibillance, grésillements
- ▶ Possibilité ou non de parler


IMPACT DE LA POSITION DU PATIENT

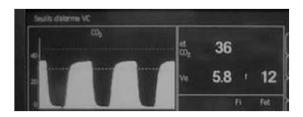

▶ Orthopnée

CLINIQUE DE LA DYSPNÉE ?

RECHERCHE DES SIGNES D'INSUFFISANCE RESPIRATOIRE AIGUE


- ► Signes d'hypoxémie
 - cyanose et troubles de la conscience: tardifs chez l'adulte
 - Tachycardie
- ► Signes d'hypercapnie
 - Troubles de la conscience plus précoces (carbonarcose)
 - Sueurs
 - Tachycardie, HTA
- ► Signes de fatigue et de lutte
 - Balancement thoraco abdominal
 - Tirage: sus claviculaire, xyphoïdien, intercostal

SATURATION PULSÉE EN O2


- ► Reflet de la saturation artérielle en O2 (SaO2) = taux saturation des globules rouge en oxygène
- ► Mesure par oxymétrie de pouls (colorimétrie biphotonique)
- ▶ Affichage de la valeur ET de la courbe +++
- ▶ Très sujet aux interférences (froid, hypoTA, anémie, mouvements...)
- ► Mesure sous AA (référence) puis sous O2

LA CLINIQUE PRIME SUR LE CHIFFRE !!!

ETCO2 (CAPNOGRAPHIE)

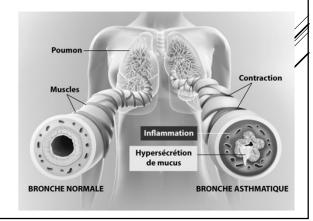
- ► Capnie expirée
- ▶ Très fiable chez le patient intubé ventilé
- ▶ Reflet indirect du débit cardiaque
- ▶ Médico légal dans la détection de l'intubation oesophagienne

LES DÉTRESSES RESPIRATOIRES

DES ORIGINES MULTIPLES

- ► Mauvaise qualité de l'AA
- ▶ Atteinte de la commande nerveuse
- ▶ Obstruction des voies aériennes
- ▶ Atteinte de la paroi thoracique
- ► Atteinte de des plèvres
- ▶ Atteinte des échanges alvéolo capillaires
- **.** . . .

1) ATTEINTE DE LA MÉCANIQUE VENTILATOIRE


- ► Hypoventilation alvéolaire = hypoxie + hypercapnie
- ► Exemples ?

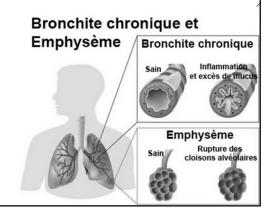
ASTHME

▶ Mécanisme, signes de gravité, prise en charge SMUR ?

ASTHME

- ▶ + de 1000 décès /an en France
- ► Inflammation + bronchoconstriction + encombrement bronchique (hypersécretion)
- ▶ Dyspnée expiratoire et respiration sibilante
- ► Signes gravité
- Ne finit pas ses phrases
- Ne peut plus parler
- Collapsus

PRISE EN CHARGE SMUR


- ► Monitorage: spO2, scope, PNI, température +/- DEP
- ► Oxygénothérapie adaptée
- ▶ VVF
- ▶ Bronchodilatateurs inhalés: béta 2 mimétiques, anticholinergiques
- ► Bronchodilatateurs IV
- ▶ IOT / sédation / curarisation

BPCO

► Mécanisme, signes de gravité, prise en charge SMUR ?

BRONCHO PNEUMOPATHIE CHRONIQUE OBSTRUCTIVE

- ► Insuffisance respiratoire chronique (récepteurs CO2 saturés)
- ► Tissu pulmonaire endommagé (emphysème)
- ▶ Décompensation: infection, MTE, pneumothorax...
- ▶ Signes de gravité: signes de lutte, carbonarcose +++
- ► Oxygénothérapie au long court devient insuffisante

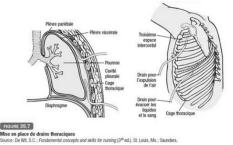
PRISE EN CHARGE SMUR

- ▶ TTT symptomatique dans un premier temps
- ▶ O2 à un débit supérieur (l'hypercapnie est mauvaise mais l'hypoxie tue !)
- ► Bronchodilatateurs
- ► ATB
- ► VNI / BIPAP
- ► IOT en dernier recours

INTOXICATIONS

▶ Mécanisme, signes de gravité, prise en charge SMUR ?

INTOXICATIONS


- ▶ CO: prend la place de l'O2 sur l'hémoglobine
 - OHD, caisson hyperbare
- ▶ Médicaments: opiacés, BZD dépresseurs respiratoires
 - ttt symptomatique, antagonisation (naloxone, flumazénil)
- ▶ Chimiques: suffocants (chlore, phosgène, NOP...) fumées d'incendie (cyanés)
 - oxygénothérapie, aérosols, antidotes (cyanokit)...

PNEUMOTHORAX

▶ Mécanisme, signes de gravité, prise en charge SMUR ?

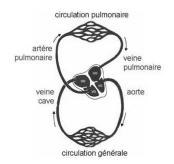
PNEUMOTHORAX

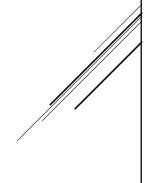
- ▶ Présence d'air dans la cavité pleurale
- ► Expansion thoracique sans expansion pulmonaire
- ▶ Spontané, traumatique, iatrogène...
- ▶ Douleur, diminution du murmure vésiculaire
- ▶ PNO suffocant: exsufflation à l'aiguille ou drainage pleural (en aspi)

© 2011 Chenelière Éducation inc

MAIS AUSSI...

- ▶ Obstruction des VA: Coma (LVAS), CE, Œdème de Quincke, Epiglottite...
- ▶ Atteinte neuro primitive (centrale, médullaire, myasthénie, SLA, SEP...)
- ► Epuisement des muscles respiratoires
- ► Restriction thoracopulmonaire (pleurésie, obésité...)


2) ATTEINTE DES ÉCHANGES PULMONAIRES


- ▶ Effet shunt: zones perfusées mais mal ventilées
 - -> Pneumopathies, Œdèmes pulmonaires, Atélectasies
- ▶ Effet espace mort : zones ventilées mais mal perfusées
 - -> EP, hypovolémie
- ▶ Altération de la membrane alvéolo capillaire
 - -> SDRA, fibroses, carcinomatoses

OAP

- ► Surcharge pulmonaire liée à la diminution de FEVG (origine cardiaque)
- ▶ Engorgement alvéolaire par augmentation de la pression hydrostatique
- ▶ Dyspnée avec grésillement auscultatoire, crachats roses mousseux
- ► Orthopnée +++

Prise en charge?

PRISE EN CHARGE SMUR

- ► Assis
- ▶ Oxygénothérapie HC
- ► PEP (CIPAP, VNI)
- ▶ VVP, scope, ECG, spO2
- ▶ Diurétiques IV
- ► TTT d'une cause hypertensive (dérivés nitrés IV ou IVSE)

RÔLE SPÉCIFIQUE AMBULANCIER

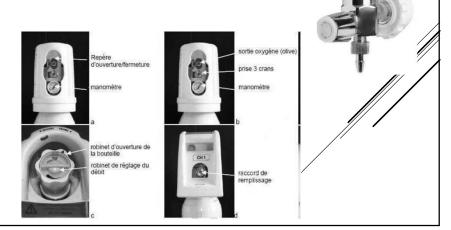
- ▶ Transport en position assise
- ▶ Monitorage
- ► Gestion de l'O2
- ► Comportement rassurant
- ▶ Conduite non stressante
- ▶ Préparation et administration d'aérosols selon la dynamique de l'intervention et sur prescription médicale

OXYGENOTHERAPIE

► Enrichissement en O2 de l'air inhalé de 21 à 100% (FiO2 0,21 à 1)

► Code couleur international : Blanc, prise 3 crans

▶ Source: prise murale ou bouteille


► Thérapies émergentes: OHD

► Dispositif patient:

- LN: max ... L/min

- MMC: mini ... L/min

- MHC: mini ... L/min

VENTILATION ASSISTÉE

- ▶ Suppléance de la mécanique ventilatoire du patient
- ▶ Insufflation d'un mélange gazeux = inversion du régime de pression (pas physiologique)
- ► CI: PNO non drainé
- ▶ Risque de collapsus de reventilation (répercussion HD)

Ventilation manuelle	Ventilation non invasive	Ventilation invasive
BAVU	Amélioration des échanges	IOT + sédation (sauf ACR)
FiO2 0,21 à 1	Aide à la mécanique ventilatoire	Ballon ou respirateur
Ballon plat	CPAP, BIPAP	VAC, VACI, VSPEP
FiO2 1, nécessite une source	Pas toujours bien supporté	
	Fuites!!!	Risque de barotraumatisme
Pas de protection des VA	Pas de protection des VA	Protection des VA

- ► Vous transportez un patient intubé ventilé de Nevers à Dijon en AR
- ▶ Durée de trajet prévu 3h
- ▶ Paramètres du respirateur :
 - Volume courant 500 mL
 - Fréquence respiratoire 16 cycles /min
 - FiO2 0,8
- ▶ Quelle quantité d'O2 allez vous consommer durant le transport?
- ► Combien de bouteilles emmenez vous (taille et nómbre ?)

- ► VM = VT x FR = 0,5 x 16 = 8 L/min de mélange gazeux
- ► $8 \times 0.8 = 6.4 \text{ L/min d'O2}$
- ► $6.4 \times 3 \times 60 = 1152 \text{ L d'O2 sur 3h}$
- ► Autonomie bouteille d'O2 (200 bar / 5L)
- ► O2 dispo = (200x5)-10% marge de sécurité = 900L d'O2
- \triangleright 900/6,4 = 140,6 min soit < 3h
- ▶ Je prévois donc au moins 2 bouteilles de 1m3 (5L) ou 1 bouteille de 3m3 (15L)